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The problem of stabilizing an unstable optimal mode in a chemical reactor 
is solved by using a control system for the reagent supply proportional to the 
reactor temperature deviation. The effect of control parameters on stability 

is analyzed by the method of small perturbations. First, a model of a perfect 
control system is considered, and the minimum critical value of the stabili- 
zation parameter that ensures stability of the optimal reactor mode is deter - 
mined. The numerical solution of the unsteady problem is used for establish- 
ing the criterion for selecting the stabilization parameter of the control system 

that would ensure stability of the reactor optimal mode. The effect of time 
lag in the control system on the feasibility of stabilizing an unstable mode is 

then examined . It is established that for a fixed stabilization parameter there 
exists a maximum time lag beyond which stabilization is impossible. The re- 

gion of parameters that define the control system for which the optimal mode 
is stable, is determined. 
Numerical solution of the unsteady problem is used for investigating the tran- 

sition of a chemical reactor to the optimal mode at switching on the control 
system with various time lags. It is established that in the absence of time 

lag, i. e. in the case of perfect control system, the transition to a stable mode 

occurs without hunting. If the time lag is nonzero, the transition of the reac- 

tor to the stable state is accompanied by temperature and concentration pro - 
file fluctuations about their stable values in the optimal mode. These flue - 
tuations become attenuated with time, and their amplitudes depend on the 
time lag. It is shown that for certain parameter values of the control system 
undamped fluctuations may occur in the reactor. 

The model of a perfect displacement chemical reactor with allowance for the over- 
all heat release [l] , used for describing catalytic reactors particularly those with flui - 

dized beds [2 - 61, can have three steady modes, viz. low, intermediate, and high. In 
the low steady mode the reactor temperature is too low for an efficient progress of the 

reaction. In the high mode the temperature is so high that decomposition of products and 
secondary reactions may often occur. Because of this the steady intermediate mode is 

the most suitable for operating chemico- technological processes. Unfortunately that mo- 
de is unstable [l], and one is faced with the problem of its stabilization. 

The problem of stabilizing the unstable steady mode for the model of a complete 

intermixing reactor was considered in [7 - 111, where the control was by means of vary- 

ing the flow rate of cooling fluid depending on temperature or concentration deviation 
from their steady values. Analysis shows that control by concentration does not always 
lead to stability, and that temperature is a more convenient variable for the control, 
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provided that the time lag is not excessive. Stah~~~~a~on of an unstable mode using the 
model of a reactor with d~tr~buied parameters was, appareniIy, first considered in (32’j. 
Since a zero order reaction was considered there, it was possible to restrict the analysis 
to that of the equation of temperature. Zt was found that any nonzero time lag in the 
control system makes stabi&ation of an unstable mode impossible, 

2, Equationa, Steady ttatkr and mod88. Equattons, boundary and ini- 
tial conditions for defining the unsteady variations of temperature and concentration in 
the considered reactor model. [Xl can be presented in the dimensionfess form as 

-$+ u+=(f-E)gexp(-j-) 
d0 

- = cl (0,’ 
d+ 

--o)+wu(e~- i3) 4-wgeap(-+)~(1 -&)dz (1.2) 

0 

In the above formUs x is the space coordinate (0 Q X < A); ~5 is the reactor 
Xengtb; c is the concentration of key substaace and Co its concentration at the reactor 
intake: E is the degree of the reaction advance; u is the reagent feed rate ; e. is the 
volume portion of reagent and reaction products of the catalyst porous layer ; T is the 
temperature in the reactor ; V and 5’ are, respectively, the volume and lateral surface 
area of the catalyst ; pg and C, are the density and specific heat of the mixture ; pp and 
C,are the density and specific heat of the catalyst: a, is the coefficient of heat transfer 
to the reactor lateral walls ; T,’ is tk tempeicature of ambient medium ; T,“is the tem- 
perature of incoming mixture ; h is the heat of reaction ; E is the activation energy : 
R is the universal gas constant: u* is the characteristic rate, and C is the time, 

Equations (1‘1) and (1.2) are based on the assumptions that diffusion of the reac- 
ting component is insignificant in comparison with the convective heat transfer, and can 
be neglected, while thermal conductivity is high and the temperature in the reactor can 
be considered constant. It fs assumed that the reaction taking place in the reactor is 
irreversible and exotermic of the first order, whose rate depends on tempeiature in ac- 
cordance with the ~rrhen~us law, It is~rthera~umed that the stream velocity distribu _ 
tion over the reactor cross section is uniform, and that the reactor process is adiabatic, 
i.e.that a=O. 

For the steady distribution of the degree of reaction advance E” (x) with allowance 
for cc = 0 and steady state temperature 0” from (1.1) -(l. 3) we obtain 
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Oo” - 8’ + 1 - exp - (1.6) 

Analysis of Eq. (1,6) shows that depending on l?JON, p, 6 and u it can have from 
one to three solutions [l] . 

The typical form of dependence of 0” on v is shown in Fig. 1 (curve1) for Oo” = 
1.75,B~z;50,andB-exp(25).Curve f intersects the vertical line Y = u0 at three points : 

O-, 0, and 0’ which correspond to the low, intermediate, and high temperature modes, 

respectively, at temperatures Or*, f)%O, and I), . Of these modes the intermediate one is 
unstable. 

Let us investigate the feasibility of stabilizing an intermediate mode by varying 
parameter u (the reacting mixture feed rate) in conformity with temperature and con- 

centration deviation in the reactor from their steady state. 

2, Control of the intermediate mode by trmpsraturs. We con- 
sider a reactor which has three steady modes (Fig. 1) with fixed parameters @en, @, g, 
and u = co : We assume that the reactor comprises a system which makes it possible to 

vary the reacting mixture feed rate to it in proportion to temperature deviation in the 
reactor from its value in the intermediate steady state. We then have to set in Eqs . 
(1.1) and (1.2) 

1’ (T) = ug (1 t_ d 16 (r - r.d) - &“I> (2.1) 

where 0,” is the intermediate steady mode temperature at u = u , -cd is the time lag 
determined by the degree of the control system inertia, and d is the stabilization pa - 

rameter , 
In the steady case instead of (1.6) from (1. l), (1.2>, and (2.X) we have 

(2.2) 

One of the solutions of Eq, (2.2) is, as previously, 8” = 0,‘. Other solutions that 
determine the steady temperatures in addition to 8 so depend now on the stabilization 

parameter (17, That dependence is shown in Fig. 2. In the absence of control (d =- 0) 
steady temperatures maintain previous values EtlO; Qzo, and@,“. When d # 0 steady 
temperatures additional to 8e” are determined by the ordinates of the intersection points 

of curve 1 (see Fig. 1) with the straight line of slope d-Iv,-* passing through point uo, 
e,O. It shows that with increasing parameter CE (straight lines 2-Y ) the temperature of 
the high steady mode decreases, while that of the low increases. At some d = d, the 
low mode merges with the intermediate (straight line 4 ). Further increase of d brings 
temperature 0,‘to the level of the low mode (straight line 5 ). Finally, whend >d,, 
Eq.(2.2) has only the single solution 6,‘which corresponds to the unique steady mode 

(straight line 7 ). 
From the condition of tangency of straight lines with slope d-1u,-1 to curve 1 at 

points 0 and D it is possible to determine d, and 4, for example, 

By analogy to an uncontrolled reactor it is possible to expect that stabilization of 
the intermediate mode is reached when the stabilization parameter d > d, and the 
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solution 0” = 0,’ of Eq. (2.2) corresponds to the low steady state. To check this we 
investigate the stability of steady states at various values of d. 

d 

Fig. 1 Fig. 2 

Assuming that in (1.1) and (1.2) 

8 (T) = 0” + 8’ (71, F, (z, r) = E” (x> + f’ (X:, r> 

where 8” and E” (x) are the temperature and the degree of reaction advance in the stea- 
dy mode, from (1.1) - (1.4) and (2.1) we obtain in linear approximation 

God (e” - Oo”)fl’(z- Q+b$~(x,T)dcc=O 
0 

b=gexp --$ , i ) u” =: zio [ 1 +- d (@ - @,“)I 

z = 0, gr (0, z) = 0 
T = 0, y tx, 0) = ~~8 (51, 8’ (0) = 8, 

and by applying to this the Laplace transformation we obtain 

PC (I, P) -- Y (4 + 8 dS’f$ +bexp(-6) x 

t 
B J$-dexp(-- pad)- -itj~] W(p) CK@, P) = 0 

-$- [pe’ (p) - @@I + [u” 4 &d (0’ - ed’) esp (- vd) - 

~(1-e=P(-~))1B’(p)+bSI’(z,p)dj-O 
0 

(2.5) 

z = 0, E’ (0, P) = 0 
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where p is the ~ansforma~on parameter and all transform are indicated everywhere by 
the argument p . The solutions of problem (2.5) for transforms of the degree of reaction 
advance and temperature are of the form 

g (x, p) = N (x, p) exp (- p -* II ,c’ 
).U I (2.6) 

0’ (P) = (%I - c&D (P)) {p -t .II (p) A- sb (+- d exp (- JX~~) - 

b 
8”” ) [+ (1 - exP (--- $7)) exp (- $) - I -$ exp (-. .-$-)])-I 

All of the transforms singularities are poles, hence the problem of stability of the 
controlled steady mode reduces to the analysis of distribution of poles of functions E’ (z, 
p) and 8’ (p} in the complex plane p . If all poles of these functions lie to the left of 

the imaginary axis, initial perturbations of the steady mode attenuate in time and the 
mode is stable but, if there are poles to the right of that axis, the mode is unstable. 

The poles of transforms (2. 6) lie at point p .= -_b and at zeros of function 

where 

Y (s) = .s2 + ars exp (-SU’%~) -+- ass + 

as exp (-su”zd) + a4 + la, exp (-srY~~) - fzsl X 

S-* 11 - exp (-s)], s = p / u” 

When considering the roots of equation Y (s) = 0 which have a positive real part 
we use the principle of argument according to which the number of zeros of function 

Y (s) within a region bounded by the closed contour r along which Y (s) # 0, is 
equal tothe increment of the argument of function Y (s), when following round the con- 
tour, divided by 2~. 

As the contour r we select r1 f r2 consisting of the right-hand semicircle of 
radius R with center at the coordinate origin (r,) and of a segment of the coordinate 

axis lying between points (0, R) and (0, -R). When on the imaginary axis there are 

zeros of function y (s), contour rz is composed of segments of the ordinate axis and 
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right-hand semicircles of small radius r with centers located in the pure imaginary ze- 
ros of function Y (s) . We then pass to limit R + 00, r --f 0. 

Analysis shows that the increment of argument of function Y (s) along r, is inde - 
pendent of a and equal 23-t when R + 00 . 

8, Per fe C t c On trol. Let us investigate the case of perfect control with Td = 
0. Instead of (2.7) we have 

Y(s) = s2 + s2,s - 521 + n, + 
(3.1) 

s& = -as - a,, S2, = a5 - a6, Q, = a, + a2 

Function (3.1) contains three parameters ~2,, Q,, and Q2, which constitute a certain 
three-dimensional parametric space. Since these parameters are functions of the reactor 
characteristics and of the steady mode in which the reactor is working, hence to each of 
the steady states of a chemical reactor corresponds some point of that parametric space, 

The subsequent investigation is aimed at the determination in that parametricspaceofthe 

stability region, i. e. a space where parameters Q2,, Q2, and Q2, are such that function 

(3.1) has no roots with positive real parts. Then, when in the parametric space point 

(Q,“, n,*, Q,*) corresponds to some steady state of the reactor, that steady state is 
stable, and when the point lies outside that region, it relates to an unstable state. Let 

us determine the stability region of the parametric space. 

Let us consider function (3.1) along contour rZ where s = iy 

(3.2) 

and determine parameters Q2,, Q2, and Qs for which function (3.1) has pure imaginary 
roots. It follows from (3.2) that this happens when the values of these parameters lie 

in the parametric space on a surface determined by equations 

Q1=-Y2-i-Q3 ,y;o;y , B2=Q3 ,“‘,,, (O<y<cQ) (3.3) 

The analysis of function (3.2) shows that in region 8, > Q2 the increment of 

the argument of function (3.1) along contour r2 when R --t cm is zero. Hence in that 
region function (3.1) has a root in the right-hand half-plane. The analysis has also 

shown that in the region comprised between surface (3.3) and the plane 52, = 51, 

the increment of the argument of function (3.1) along the contour r* is -2n, when 

0 < y ( 2-c . Hence in that region the increment of the argument of function (3.1) 
along the contour r1 + r2 is zero and function (3.1) has there no roots with a posi - 

tive real part. This means that the region comprised between surface (3.3) and the 

plane sa, = Q2 is the sought stability region. 

The obtained data on the stability region in the parametric space Q1Q2,Qt make 

possible the investigation of the effect of perfect control on the stability of the inter - 
mediate steady mode at temperature 8,‘. Certain Q1*, Q,*, and Q,* correspond to the 

intermediate steady mode in the absence of control (d = 0) . Point A = (Q2,*, !&*, 
as*) lies outside the stability region. With increasing parameter d the quantity &* 
does not vary, whiles&* andQa*increase, hence point A moves in the plane Q2, = 

Q1*toward the stability region whose dimensions increase. Changes in the relative po - 
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sition of the stability region and point A in the plane 9s = Qs* are shown in Fig. 3 
for three different values of the stabilization parameter d. Points d,, d,,and d, and 
the stability regions comprised between the straight line 62, = 8, and curves 1, 2, and 

3, correspond to dx = 0, $ = 7.9, and d, = 12, respectively. The stability region 
for d = 0 is shown shaded. It is seen that the-~termedlate mode becomes stable for 
finite values of the stability parameter d that exceed the critical value d, at which the 
point reaches the stability region boundary, i.e. the straight line s;Z, = S$s. It is not 

difficult to ascertain that the relation ai* = 8,* c orresponds exactly to the equation 
derived in Sect. 2 for the determination of d, . Hence the stabilization of the interme- 
diate unstable mode occurs at its transition to the lower mode. 

Fig. 3 Fig. 4 

The investigation of stability of the other two steady modes for various stabilization 
parameters is similar. It can be shown that the upper steady state remains stable up to 
its disappearance, i. e. until the stabilization parameter d = dl_ (see Fig. Z), while the 
lower steady state loses its stability when d = d,, i. e. at passing to the unstable inter - 
mediate mode. 

Note that decreasing parameter d beyond zero move-s point A away from the sta- 
bility region whose size then contracts. Hence it is not possible to achieve stabilization 

by selecting negative values for parameter d . 
Let us consider the problem of selecting the stabilization parameter d. As previous- 

ly stated, when d > d, the optimal temperature mode becomes stable. A numerical 
solution of the unsteady nonlinear system (1.1) - (1.4) had shown (see Sect. 5 below) that 
the maximum permissible level of finite perturbation increases with increasing stabiliza- 
tion parameter. For instance, (see Fig. 2) when d = da the steady mode at temperature 
6,“is stable with respect to temperature perturbations of order A0. When perturbations 

exceed the maximum permissible level, the reactor passes to the upper steady mode. 
The selection of a higher value for the stabilization parameter in the control system is, 
thus, preferable because the optimal steady mode under stabi~zation is stable with res - 
pect to perturbations of a larger scale. 

4. Effect of time lag. Let us investigate the effect of the control system 
time lag xd on the stability of the mode that is being stabilized. We consider the case 
when the stabilization parameter d > d,, so that with a perfect control system mode 
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0” = es0 is stable. We shall increase the time lag from zero and determine increments 
of the argument of function (2.7) along contour I’s for each Q.The hodographs of vet - 
tor M = Y (iy) = v + iv (0 < Y) are plotted in Fig. 4 for several values of 

TGdr < Td, < Tdt . It will be seen that when td, = 0 the increment of the argument of 
function (2.7) in the interval (0, R) with R -+ oo is equal -TC and, owing to the 
hodograph symmetry about the real axis, the total increment of the argument along 

contour f‘s is equal -2~. coherently that increment along the complete contour 
I’ is zero whenrd, = 0, and function ‘4 (8) has no zeros in the right-hand half-plane. 
This means that the considered steady mode is stable, which conforms to the results 
obtained earlier Cl]. 

With increasing time lag the hodograph form changes. It appears that there exists 
a critical td = ad*, such that when Td > %d* the increment of the argument of func- 
tion y (S) along contour ??s is equal 2n, and the total increment is &c. Hence a con- 
trolled steady mode becomes unstable when ad > Q*. The hodograph which passes 
through point (0, 0) corresponds to the critical time lag xd* . From this condition by 
equating to zero the real and imaginary parts of function W we obtain 

The system of Eqs. (4.1) can be used for determining the critical value of the time 
lag Td* as a function of the stabilization parameter d. 

The results of numerical solution of system (4.1) are shown in Fig. 5. It is seen that 
the critical time lag diminishes with the increase of the stabilization parameter. The 
curve zd* = zd+ (d) divides there the complete region of parameters d and td in two 
regions of which the shaded one contains values of the stabilization parameter and of 
time lag for which the stabilized steady mode is stable. 

Tt* For every time lag in the control system there 
exists an upper bound for the stabilization parame- 

ter , which ensures the stabilization of an unstable 

steady mode. Thus an excessively long time lag 
leads to the loss of stability. 

We recall that it was established above that the 

i~tability of reactor parameters with related tern - 

perature perturbations in it impose a lower bound on 
the stabilization parameter of the control system. 
It is clear now that allowance for the time lag estab- 
lishes the upper bound for the stabilization parame - 
ter . It is obvious that the greater the time lag in 

50 d 
the control system, the lower must be the level of 
the reactor perturbation parameters if satisfactory 

Fig. 5 stabilization of a steady mode is to be achieved. 
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Thus the investigations presented in this paper make it possible to formulate recom- 
mendations for determi~~g control system parameters on the basis of characteristics of 
the considered reactor, which would ensure the stabilization of an unstable steady mode. 

6, Rsrult, of numerical rolution of the nonlinrrr problem, 
A numerical solution of problem (1.1) - (1.4) was obtained on a computer with the aim 
to investigate the unsteady behavior of a reactor and of its transition to a steady mode. 

Some of the results are shown in Fig. 6, where curves 2 and 2 illustrate transition of 
the reactor to a stabilized mode from the low steady state as the result of switching on 
of a proportional control at instant of time ‘c=O . Curve I relates to the case when the 

stabilization parameter d > d, and the control are perfect, i. e. rd=O. It is seen that 

the transition to the stable mode is monotonic. 

z 

Fig. 6 

Parameters d and zd for curve ,? are 
such that point (cl, rd) lies in the shaded area 

of Fig. 5, which means, as previously stated, 
that the stabilized mode is stable. This shows 

that the presence of time lag induces flue - 
tuations at transition to the stabilized mode. 
Numerical computations show that the ampli- 
tude of such damped ~uctuations depends on 
parameters d and z,+ Such temperature 
fluctuations in the reactor must be taken into 
account because of the possibility of over - 

heating. 
Curve 3 illustrates the reactor behavior 

when point (d, Q) lies outside the shaded 
area in Fig. 5. In that case the mode is un- 

stable under stabilization. It can be shown by 
a method similar to that used in Sect.4 that 

the time lag does not affect the stability of 

the high steady mode. It is seen from Fig. 6 
that the reactor passes in that case from the 

controlled mode to the high steady state, 

If at the same time the stabilization parameter d > d, (Fig. 2), the high steady mode 
cannot exist and, as shown by numerical solutions on a computer, the reactor is subjec- 
ted to undamped fluctuations, 
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